歡迎光臨
每天分享高質量文章

CMU-2018年8月-深度學習基礎課程影片分享

課程介紹

    以深度神經網路為代表的“深度學習”系統被應用於越來越多的人工智慧任務中,從語言理解、語音和影象識別,到機器翻譯、路徑規劃,甚至遊戲和自動駕駛。因此,在許多高階應用環境中,深度學習的專業知識正在從深奧難懂狀態轉變為強制性的必要條件,併在工業應用中具有很大的優勢。

    在本課程將學習深度神經網路的基礎知識,以及它們在各種AI任務中的應用。在課程結束時,學生將對深度學習有很大的瞭解,並能夠將深度學習應用於各種任務。他們還將瞭解當前關於深度學習的大部分文獻,並透過進一步研究擴充套件他們的知識。


課程地址

http://deeplearning.cs.cmu.edu/


文末附課程已經release影片及PPT分享

(影片帶英文字母)


從學生的角度來看該課程內容

    該課程在概念方面非常全面。它有助於學生理解深度學習的基礎知識。課程從MLP模型開始講起,並且逐漸演化到更複雜的概念,例如註意力(Attention)和序列到序列(Seq2Seq)模型。學生將完全掌握PyTorch,這對於實現深度學習模型非常重要。作為學生,將學習構建深度學習模型所需的工具。HomeWork由兩個部分組成,即Autolab和Kaggle。Kaggle使學生能夠探索多種架構,並瞭解如何微調和不斷改進模型。所有作業的任務都是相似的,瞭解如何使用多種深度學習方法解決相同的任務很有趣。


課程大綱

影片下載地址

點選下方小廣告,然後公眾號回覆關鍵字“cmu2018”即可獲取

往期精彩內容推薦

吳恩達-人工智慧是科學技術進步新助力

-《Pro Deep Learning with TensorFlow》分享

AI實戰聖經《Machine Learning Yearning》第1-52章中英文版pdf分享

遷移學習在自然語言處理中的應用之通用語言建模

神聖的NLP!一文理解詞性標註、依存分析和命名物體識別任務

《純乾貨》2018-2019年國際AI會議最全資訊整理分享

最新深度學習面試題目及答案集錦

歷史最全-16個推薦系統開放公共資料集整理分享

一文告訴你Adam、AdamW、Amsgrad區別和聯絡,助你實現Super-convergence的終極標的

基於深度學習的文字分類6大演演算法-原理、結構、論文、原始碼打包分享

深度學習/機器學習的處理器串列(最全_中文版)

掃描下方二維碼可以訂閱哦!

DeepLearning_NLP

深度學習與NLP

       商務合作請聯絡微訊號:lqfarmerlq

覺得還不錯,記得點選下方小廣告哦!!

贊(0)

分享創造快樂