作者:TIRTHAJYOTI SARKAR ;翻譯:閆曉雨 ;校對:Uynix
本文約1790字,建議閱讀4分鐘。
資料科學家介紹了向量化技巧,簡單的數學變化可以透過可迭代物件執行。
簡介
向量化技巧對於資料科學家來說是相當熟知的,並且常用於程式設計中,以加速整體資料轉換,其中簡單的數學變化透過可迭代物件(例如串列)執行。未受到重視的是,把有一定規模的程式碼模組,如條件迴圈,進行向量化,也能帶來一些好處。
正文
Python正在迅速成為資料科學家的程式設計實戰語言。但與R或Julia不同的是,它是通用型程式語言,沒有功能語法來立即開始分析和轉換數值資料。所以,它需要專門的庫。
Numpy是Numerical Python的縮寫,是Python生態系統中高效能科學計算和資料分析所需的基礎軟體包。它是幾乎所有高階工具(如Pandas和scikit-learn)的基礎。
TensorFlow使用NumPy陣列作為基礎構建模組,在這些模組的基礎上,他們為深度學習任務(在長串列/向量/數字矩陣上大量使用線性代數運算)構建了張量物件(Tensor objects)和圖形流(graphflow)許多Numpy操作都是用C語言實現的,避免了Python中迴圈的基本代價,即指標間接定址和每個元素的動態型別檢查。速度的提升取決於您正在執行的操作。對於資料科學和現代機器學習的任務來說,這是一個非常寶貴的優勢。
我最近一篇文章講了使用Numpy向量化簡單資料轉換任務的優勢,它引起了一些聯想,並受到讀者的歡迎。關於程式碼簡化等向量化的效用,也有一些有趣的討論。
現在,基於某些預定義條件的數學轉換在資料科學任務中相當普遍。事實證明,透過首先轉換為函式然後使用numpy.vectorize方法,可以輕鬆地對條件迴圈的簡單模組進行向量化。在我之前的文章中,我展示了Numpy向量化簡單數學變換後一個數量級的速度提升。對於目前的情況來說,由於內部條件迴圈仍然效率低下,速度提升並不那麼顯著。但是,與其他純粹Python程式碼相比,執行時間至少要提高20-50%。
以下是演示它的簡單程式碼:
import numpy as np
from math import sin as sn
import matplotlib.pyplot as plt
import time
# 測試數量
N_point = 1000
# 定義一個有if else迴圈的函式
def myfunc(x,y):
if (x>0.5*y and y<0.3): return (sn(x-y))
elif (x<0.5*y): return 0
elif (x>0.2*y): return (2*sn(x+2*y))
else: return (sn(y+x))
# 從正態分佈產生儲存元素的串列
lst_x = np.random.randn(N_point)
lst_y = np.random.randn(N_point)
lst_result = []
# 可選擇畫出資料分佈
plt.hist(lst_x,bins=20)
plt.show()
plt.hist(lst_y,bins=20)
plt.show()
# 首先,純粹的Python程式碼
t1=time.time()
First, plain vanilla for-loop
t1=time.time()
for i in range(len(lst_x)):
x = lst_x[i]
y= lst_y[i]
if (x>0.5*y and y<0.3):
lst_result.append(sn(x-y))
elif (x<0.5*y):
lst_result.append(0)
elif (x>0.2*y):
lst_result.append(2*sn(x+2*y))
else:
lst_result.append(sn(y+x))
t2=time.time()
print(“\nTime taken by the plain vanilla for-loop\n———————————————-\n{} us”.format(1000000*(t2-t1)))
# List comprehension
print(“\nTime taken by list comprehension and zip\n”+’-‘*40)
%timeit lst_result = [myfunc(x,y) for x,y in zip(lst_x,lst_y)]
# Map() 函式
print(“\nTime taken by map function\n”+’-‘*40)
%timeit list(map(myfunc,lst_x,lst_y))
# Numpy.vectorize 方法
print(“\nTime taken by numpy.vectorize method\n”+’-‘*40)
vectfunc = np.vectorize(myfunc,otypes=[np.float],cache=False)
%timeit list(vectfunc(lst_x,lst_y))
# 結果
Time taken by the plain vanilla for-loop
———————————————-
2000.0934600830078 us
Time taken by list comprehension and zip
—————————————-
1000 loops, best of 3: 810 µs per loop
Time taken by map function
—————————————-
1000 loops, best of 3: 726 µs per loop
Time taken by numpy.vectorize method
—————————————-
1000 loops, best of 3: 516 µs per
請註意,我已經在任何可以把運算式用一行陳述句來實現的地方使用了%timeit Jupyter魔術命令。這樣我就可以有效執行超過1000個相同運算式的迴圈,來計算平均執行時間以避免任何隨機效應。因此,如果您在Jupyter Notebook中執行整個指令碼,則可能會出現與第一種情況(即普通迴圈執行)略有不同的結果,但接下來的三種應該會給出非常一致的趨勢(基於您的計算機硬體)。
我們看到的證據表明,對於基於一系列條件檢查的資料轉換任務,與一般Python方法相比,使用Numpy的向量化方法通常會使速度提高20-50%。
這貌似不是一個顯著改進,但節省的每一點時間都可以加入資料科學工作流程中,從長遠來看是值得的!如果資料科學工作要求這種轉換髮生一百萬次,那麼可能會導致短則八小時,長則兩天的差異。
簡而言之,任何時候你有長的資料串列並需要對它們進行數學轉換,都應強烈考慮將這些Python資料結構(串列或元組或字典)轉換為numpy.ndarray物件並使用自帶的向量化功能。
Numpy提供了一個用於更快程式碼執行的C應用程式介面(C-API),但是它失去了Python程式設計的簡單性。這個Scipy講義能告訴你在這方面的所有相關選項。
法國神經科學研究人員撰寫了關於該主題的完整開源線上書籍。看看這裡。
作者的話
如果您有任何問題或想法可以分享,請聯絡作者tirthajyoti [AT] gmail.com。您也可以在作者的GitHub倉庫以獲取Python,R或MATLAB的程式碼片段以及機器學習相關資源。如果你像我一樣熱衷於機器學習/資料科學/半導體,請隨時在LinkedIn上新增我。
作者簡介
Tirthajyoti Sarkar ,半導體從業人員,資料科學與機器學習愛好者。使用Python\R\Matlab進行資料科學和機器學習的實踐者。半導體專業人員。伊利諾伊大學電子工程博士。在三藩灣區生活與工作。
原文標題:
Data science with Python: Turn your conditional loops to Numpy vectors
原文連結:
https://www.codementor.io/tirthajyotisarkar/data-science-with-python-turn-your-conditional-loops-to-numpy-vectors-he1yo9265
譯者簡:閆曉雨,本科畢業於北京林業大學,即將就讀於南加州大學應用生物統計與流行病碩士專案。繼續在生統道路上摸爬滾打,熱愛資料,期待未來。
關聯閱讀
原創系列文章:
資料運營 關聯文章閱讀:
資料分析、資料產品 關聯文章閱讀:
80%的運營註定了打雜?因為你沒有搭建出一套有效的使用者運營體系
商務合作|約稿 請加qq:365242293
更多相關知識請回覆:“ 月光寶盒 ”;
資料分析(ID : ecshujufenxi )網際網路科技與資料圈自己的微信,也是WeMedia自媒體聯盟成員之一,WeMedia聯盟改寫5000萬人群。