歡迎光臨
每天分享高質量文章

我之所以進入Oracle是因為……

導語:人工智慧是泡沫麼?AI產業的未來將何去何從?AI的核心技術機器學習又該怎麼學習?AI行業從業者又是怎麼看待這個行業的呢?本文作者饒毅,現就職於甲骨文公司。


 

AI行業現狀

進幾年來,無論是科研院所,商業巨頭還是初創企業,各行各業都在大力開發或者引進人工智慧,由於儲備不足,導致人工智慧人才出現巨大缺口,根據領英近日釋出的全球AI領域技術人才分佈圖顯示,中國目前的AI人才缺口超過5萬


人才供不應求,此領域崗位的薪資也自然水漲船高。不過也有很多程式員在找人工智慧的工作時,還是不免會擔心:人工智慧是泡沫嗎?關於這個問題,吳恩達最近給出了很好的回答:

“大約100年前,人們認為關於電力有太多的炒作,但那個泡沫現在也還沒破,我們發現電力很有用! 深度學習目前已經創造了大量的價值——用於網路搜尋,廣告,語音識別,推薦系統等等——可以很明顯的看到,深度學習,還有很多其他的AI工具(圖模型,規劃,KR等),現在都正在一個明確的路徑上引導著行業的轉型。”

而且人工智慧熱度的出現不是突然興起的,在此之前,大資料和演演算法等基礎技術的成熟度已經很高,各企業在本行業的資料儲備也非常充分,對AI的需求也很迫切,投身於這樣的行業怎麼會存在泡沫呢?對任何行業來說,最大的泡沫就是停滯不前,不思進取。



從國家政策角度來看,2017年中國政府宣佈至2030年實現人工智慧領導地位路線圖,制定了諸如“中國製造2025”、“網際網路+人工智慧計劃三年指導”、“新一代人工智慧發展計劃”等政策,力爭促使中國企業成為人工智慧技術領域的全球領導者。可見當下的中國,無論國家還是地方政策,都在不斷的推動中國人工智慧技術向前發展。

縱觀國內的人工智慧市場,谷歌強勢回歸,建立在中國的人工智慧團隊;微軟研究院也有近千人從事人工智慧的工作;17年國家成立了“深度學習技術及應用國家工程實驗室”,在現有大好政策與市場需求下,更有一大批傳統或新興的軟體公司紛湧踏至。

以我所在的公司oracle為例,公司幾年前就成立了AI Lab,近幾年很多產品也都在大力引入AI的特性。比如我所在的HCM CLOUD部門(人力資源管理雲產品),引入機器學習演演算法後,其中一個優點就是可以更快速的找到“最適合”的候選人,這些候選人不僅預期表現出色,而且最有可能是滿足崗位需求的,大大減少了前期人工篩選的工作量。最近Oracle人工智慧平臺雲也即將上線,類似於谷歌剛剛釋出的Cloud AutoML。平臺上預裝使用者熟悉的人工智慧庫、工具和深度學習框架,包括Jupyter Notebook、Keras、NymPy、scikit-learn和TensorFlow等。


Tools and frameworks

 

學習經歷

幾年前,我剛接觸機器學習的時候,最初熱情滿滿,每天都在看各種模型和演演算法,可遇到實際的專案,還是不知道如何準確的分析和解決,也不太理解各個演演算法的優缺點,總覺得雲裡霧裡,抓不住重點,結果都沒有深入,還浪費了大量的時間


因為這些知識的掌握都不是一蹴而就的,需要厚積薄發,不再只是寫程式碼找bug。機率論、線性代數、高數相關的知識都必須學習,可是盲目的去回顧學習這些知識也非常的耗時。後來我參加了udacity的機器學習課程,從基礎知識到機率論、統計分析,到jupyter/numpy/tensorflow等工具框架的運用,再到實際案例的分析,雖然不可能完全深入,但是提供了一個循序漸進的學習路徑,思路也更加清晰明瞭。

最重要的是,這種課程也特別適合我這種有拖延症的人。因為課程被劃分成好幾個階段,每個階段都有一批學員同時進行學習,還有導師實時的問題解答,批改專案成果並反饋,幫助自己更快速的學習成長。

 

求職經歷

2015年我準備換工作時,正好Oracle有個跟機器學習相關的崗位有空缺,我便積極準備面試。由於自己之前做過影象處理的專案,而且在完成udacity的課程後,也積累一定的理論和實踐基礎,對常見的模型、演演算法、工具都比較熟悉。最終幸運的入職,雖然不是核心的AI研發崗位,不過也能在工作中接觸到很多跟AI實際應用相關的案例,大家都知道Oracle的客戶遍佈各行各業,他們早已在自己的資料庫中積累了大量的資訊,如何讓這些資訊得到更有價值的結論,進行更有效的預測分析,客戶都在AI領域不斷探索。目前我在也更加積極努力的學習,非常期待能夠在此領域有更深一層次的突破。

 

AI工作內容(價值)

人工智慧的工作如此火爆,那麼相關的研發崗位都有哪些呢?大概的工作內容是什麼?根據目前的職場情況,大致分為以下幾種型別:

  1. 人工智慧(機器學習)科學家(研究人員):他們基本都是博士頭銜,在重量級或者頂級期刊上都有他們的大作,在此領域不段創造升級出更優秀的AI演演算法和模型,並將研究多年的理論演演算法引導人們帶入到實際應用中去,這些研究人員基本都供職於各大高校和頂尖企業的AI實驗室

  2. 人工智慧軟體開發工程師:開發軟體系統和框架,使得AI演演算法可以在系統中執行;

  3. 資料挖掘與分析工程師:對大資料進行深層次的挖掘和分析,以得到有價值的結論或進行預測;

  4. 人工智慧的應用方面:是指在某一個具體領域,將AI的某些功能發揮出來,如訓練機器識別手勢,檢測金融詐騙,分析市場走向等等。

圖片來自udacity

可以看出,這些崗位的側重點雖然不同,但對於傳統的程式員來說,無論哪一種,都在現有程式設計工作之上提出了更多的要求和挑戰。這些挑戰不僅來源於需要更多的專業知識和技能,更重要的是缺乏一定的實戰經驗,因此當真正遇上難題時只能束手無策。

Udacity,矽谷無人車之父Sebastian Thrun所創立的矽谷前沿技術教育平臺,現開設「機器學習工程師」課程。報名課程,你將得到——

-獨家課程內容,專案直播輔導

除了學習來自矽谷領先企業的課程影片、實戰專案,與專案直播講解,還有更多 Udacity 獨家學習資料等待你來探索。

 

-加入同步學習小組,在導師幫助下快速成長

你將加入學習小組,認識志同道合的夥伴,在專業導師全方位輔導和監督下,最高效率掌握前沿技術,成為搶手人才。

 

-獨一無二的矽谷實戰專案和程式碼審閱

親自挑戰來自矽谷的資料分析開發實戰專案,獲得該領域專家的逐行程式碼審閱和反饋,學習最先進的技術標準,與矽谷程式設計開發者的思維同步。



「機器學習工程師」基石奈米學位課程現已開放報名,限量課程席位,最後一天!快快上車加入AI+China浪潮吧!!點選「閱讀原文」即可報名,還可免費體驗課程。

贊(0)

分享創造快樂