深度摺積神經網路在影象、語音及NLP領域取得了巨大的成功,從學習和分享的角度出發,本篇文章整理了自2013年以來關於CNN相關的最新的資源,包括重要的論文、書籍、影片教程、Tutorial、理論、模型庫和開發庫。文末附連結版資源地址。
重要的論文:
1. Very deep convolutional networks for large-scale image recognition (VGG-net) (2014)
2. Going deeper with convolutions (GoogLeNet) by Google (2015)
3. Deep learning (2015)
4. Visualizing and Understanding Convolutional Neural Networks (ZF Net) (2014)
5. Fully convolutional networks for semantic segmentation (2015)
6. Deep residual learning for image recognition (ResNet) by Microsoft (2015)
7. Deepface closing the gap to human-level performance in face verification (2014)
8. Batch normalization Accelerating deep network training by reducing internal covariate shift (2015)
9. Deep Learning in Neural Networks An Overview (2015)
10. Delving deep into rectifiers Surpassing human-level performance on imagenet classification (PReLU) (2014)
11. Faster R-CNN Towards real-time object detection with region proposal networks (2015)
12. Fast R-CNN (2015)
13. Spatial pyramid pooling in deep convolutional networks for visual recognition (SPP Net) (2014)
14. Generative Adversarial Nets (2014)
15. Spatial Transformer Networks (2015)
16. Understanding deep image representations by inverting them (2015)
17. Deep Learning of Representations Looking Forward (2013)
經典的文章:
18. mageNet Classification with Deep Convolutional Neural Networks (AlexNet) (2012)
19. Rectified linear units improve restricted boltzmann machines (ReLU) (2010)
重要的理論:
20. Deep Neural Networks are Easily Fooled High Confidence Predictions for Unrecognizable Images (2015)
21. Distilling the Knowledge in a Neural Network (2015)
22. Deep learning in neural networks An overview (2015)
重要的書籍:
23. Deep Learning Textbook – An MIT Press book (2016)
24. Learning Deep Architectures for AI
25. Neural Nets and Deep Learning
重要的課程/Tutorial:
26. Caffe Tutorial (CVPR 2015)
27. Tutorial on Deep Learning for Vision (CVPR 2014)
28. Introduction to Deep Learning with Python – Theano Tutorials
29. Deep Learning Tutorials with Theano/Python
30. Deep Learning Take machine learning to the next level (by udacity)
31. DeepLearnToolbox – A Matlab toolbox for Deep Learning
32. Stanford Matlab-based Deep Learning
33. Stanford 231n Class Convolutional Neural Networks for Visual Recognition
34. Deep Learning Course (by Yann LeCun-2016)
35. Generative Models (by OpenAI)
36. An introduction to Generative Adversarial Networks (with code in TensorFlow)
重要的資源/模型:
37. VGG-net
38. GoogLeNet
39. ResNet – MatConvNet implementation
40. AlexNet
41. Fully Convolutional Networks for Semantic Segmentation
42. OverFeat
43. SPP_net
44. Fast R-CNN
45. Faster R-CNN
46. Generative Adversarial Networks (GANs)
47. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks)
48. ResNeXt Aggregated Residual Transformations for Deep Neural Networks)
49. MultiPath Network training code
重要的架構和開發庫:
50. Tensorflow by Google [C++ and CUDA]
51. Caffe by Berkeley Vision and Learning Center (BVLC) [C++][Installation Instructions]
52. Keras by François Chollet [Python]
53. Microsoft Cognitive Toolkit – CNTK [C++]
54. MXNet adapted by Amazon [C++]
55. Torch by Collobert, Kavukcuoglu & Clement Farabet, widely used by Facebook [Lua]
56. Convnetjs by Andrej Karpathy [JavaScript]
57. Theano by Université de Montréal [Python]
58. Deeplearning4j by startup Skymind [Java]
59. Paddle by Baidu [C++]
60. Deep Scalable Sparse Tensor Network Engine (DSSTNE) by Amazon [C++]
61. Neon by Nervana Systems [Python & Sass]
62. Chainer [Python]
63. h2o [Java]
64. Brainstorm by Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA) [Python]
65. Matconvnet by Andrea Vedaldi [Matlab]
連結版文章下載地址:
連結: https://pan.baidu.com/s/1dGpAC97 密碼: t4dd
往期精彩內容推薦:
2017年蒙特利爾深度學習暑期學校ppt分享(附2016年會議影片地址)
最佳化策略5 Label Smoothing Regularization_LSR原理分析
純乾貨7 Domain Adaptation影片教程(附PPT)及經典論文分享
機器翻譯中的深度學習技術:CNN,Seq2Seq,SGAN,Dual Learning
DeepLearning_NLP
深度學習與NLP
商務合作請聯絡微訊號:lqfarmerlq