或許您已經在網上看了許多的MOOC,閱讀了很多工具書,但是您有可能仍然擔心找不到工作或根本沒有找到工作。在資料科學領域找到合適的工作的確有一定難度。最好的向HR展現您能力的方式就是準備一個檔案夾。在檔案夾中放入以下五種您做過的資料科學專案。
資料清洗
通常來講,資料科學家在一個新的專案中預計會花80%的時間來清洗資料。這對於團隊來說是一個長而痛苦的過程。如果您能展示您在清洗資料上具有豐富的經驗,您就會變得很有價值。您可以找一些雜亂無章的資料集練習清理資料來增加您的經驗。
如果您用的是Python,Pandas是一個很好用的包;如果您用的是R,dplyr包將會是一個不錯的選擇。確保您展示出以下的技能:
-
標註重點資料
-
連線多個資料集
-
檢測缺失資料
-
檢測異常值
-
填充缺失資料
-
確認資料質量
另一項有關資料科學的重要內容是探索性資料分析(EDA)。這是提出問題的過程,需要您用視覺化技術來研究這個資料集。EDA使得分析師能夠從資料中得出一些能驅動商業決策的結論。或許您能從客戶的資料、銷售的趨勢、季節的影像中得到有趣的結論。甚至有時候您能有一些和您最初設想完全不同的發現。
用於探索性分析的一些有用的Python包是Pandas和Matplotlib。對於R使用者,ggplot2包將很有用。EDA專案應該顯示以下技能:
用於探索性分析的一些有用的Python包是Pandas和Matplotlib。對於R使用者,ggplot2包將很有用。EDA專案應該顯示以下技能:
-
能夠為調查制定相關問題
-
識別趨勢
-
識別變數之間的相關關係
-
使用視覺化技術(散點圖,直方圖,箱線圖等)有效地傳達結果
互動式資料視覺化包括儀錶板等工具。這些工具對資料科學團隊以及更多面向業務的終端使用者都很有用。儀錶板允許資料科學團隊進行協作,並一起繪製見解。更重要的是,它們為面向業務的客戶提供了一種互動式工具。這些人專註於戰略標的而非技術細節。通常,資料科學專案的可交付成果將以儀錶板的形式出現。
對於Python使用者,Bokeh和Plotly庫非常適合建立儀錶板。對於R使用者,請務必檢視RStudio的Shiny軟體包。您的儀錶板專案應突出顯示以下重要技能:
-
包括與客戶需求相關的指標
-
建立有用的功能
-
邏輯佈局(“F樣式”便於掃描)
-
建立最佳掃清率
-
生成報告或其他自動操作
機器學習專案是資料科學組合的另一個重要部分。在您開始構建一些深度學習專案之前,請退後一步。我們說的並不是建立複雜的機器學習模型,而是堅持基礎。線性回歸和邏輯回歸是很好的開始。這些模型更易於解釋和與上層管理層溝通。我還建議關註一個對業務有影響的專案,例如預測客戶流失,欺詐檢測或貸款違約。這比預測花型更貼近於工作實際。
如果您是Python使用者,請使用Scikit-learn庫。對於R使用者,請使用Caret包。您的機器學習專案應該傳達以下技能:
-
您選擇使用特定機器學習模型的原因
-
將資料拆分為訓練/測試集(k倍交叉驗證)以避免過擬合
-
選擇正確的評估指標(AUC,adj-R ^ 2,混淆矩陣等)
-
特徵值的選擇
-
超引數調整
溝通是資料科學的一個重要方面。能否有效地傳達結果是優秀資料科學家與優秀科學家之間的區別。無論您的模型多麼花哨,如果您無法向隊友或客戶解釋,您將無法獲得他們的支援。幻燈片和膝上型電腦都是很好的溝通工具。嘗試將您的一個機器學習專案放入幻燈片格式中。您還可以將Jupyter Notebook或RMarkdown檔案用於需要溝通的專案。
確保瞭解您的標的受眾是誰。向高管們展示您的專案和向機器學習專家展示是非常不同的。一定要掌握這些技能:
-
瞭解您的標的受眾
-
使用相關的視覺化技術
-
請勿過多地提供幻燈片
-
確保您的簡報流暢
-
將結果與業務影響相結合(降低成本,增加收入)
確保在Jupyter筆記本或RMarkdown檔案中記錄您的專案。然後,您可以使用Github Pages將這些檔案免費轉換為靜態網站。這是向潛在僱主展示您的專案的好方法。
原文URL:https://www.kdnuggets.com/2018/06/5-data-science-projects-hired.html
原文作者:John Sullivan
原文題名:5 Data Science Projects That Will Get You Hired in 2018
翻譯、校對、排版:李昊璟、朝樂門
END
版權宣告:本號內容部分來自網際網路,轉載請註明原文連結和作者,如有侵權或出處有誤請和我們聯絡。
關聯閱讀:
原創系列文章:
資料運營 關聯文章閱讀:
資料分析、資料產品 關聯文章閱讀:
80%的運營註定了打雜?因為你沒有搭建出一套有效的使用者運營體系
合作請加qq:365242293
更多相關知識請回覆:“ 月光寶盒 ”;
資料分析(ID : ecshujufenxi )網際網路科技與資料圈自己的微信,也是WeMedia自媒體聯盟成員之一,WeMedia聯盟改寫5000萬人群。